Possibility to Reduce Knock Combustion by Egr in the Si Test Engine

نویسنده

  • Wojciech Tutak
چکیده

The paper presents the results of modelling thermal cycle of internal combustion engine including exhaust gas recirculation. The test engine can not achieve the optimum parameters of work due to occurrence of the knock combustion. The influence of EGR on the limits of the knock occurrence in the engine was studied. It turned out that few percent of exhaust gases in the fresh charge effectively shifts the knock limit to higher ignition advance angles. The values of the limit ignition timing for the test engine was determined in order to avoid combustion knock. Larger share of EGR caused too much slowing the spread of the flame inside the combustion chamber of the test engine. EGR at constant angle of ignition was very effective in limiting the content of NO in the exhaust, but on the other hand it has an adverse effect on the engine parameters. The engine operate with exhaust gas recirculation in order to obtain the possible best parameters the ignition timing should be optimized. However, that with increasing values of the thermodynamic parameters of thermal cycle of engine increased NO content in the exhaust. The paper presents results of modelling thermal cycle of IC engine, including exhaust gas recirculation and knock combustion. The object of researches was the S320ER spark ignition internal combustion engine supplied with petrol. The engine was operated at a constant speed of 1000 rpm. Modelling of the thermal cycle of the test SI engine in the FIRE software was carried out.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cooled EGR for a Turbo Charged SI Engine to Reduce Knocking and Fuel Consumption

Cooled exhaust gas recirculation is emerging as a promising technology to address the increasing demand for fuel economy without compromising performance in turbocharged spark injection engines. The objectives of this study are to quantify the increase in knock resistance and to decrease the enrichment and emission at high load. For this purpose four stroke turbo charged Spark Ignition engine (...

متن کامل

Effect of Initial Temperature and EGR on Combustion and Performance Characteristics of Homogenous Charge Compression Ignition Engine Fueled with Dimethyl Ether

Homogeneous Charge Compression Ignition (HCCI) combustion is a pioneer method of combustion in which pre-mixed fuel and oxidizer (typically air) are compressed to the point of auto-ignition. HCCI engines can operate with most alternative fuels, especially, dimethyl ether (DME) which has been tested as a possible diesel fuel due to its simultaneously low NOx and PM emissions. In this paper a ...

متن کامل

Experimental Investigation of the EGR Temperature Effects on the Destruction of the Fuel’s Availability Due to Combustion Processes in IDI Diesel Engine Cylinder

In this study a heat exchanger is designed for cooling exhaust gas and an experiment is carried out to investigate the effect of Exhaust Gas Recirculation (EGR) temperature on destruction of the fuel’s availability due to combustion processes in IDI diesel engine cylinder. To serve this aim an exergy analysis is conducted on the engine cylinder which provides all the availability terms by which...

متن کامل

Operating Range Expansion in a HCCI Natural Gas Engine Using Charge and Thermal Stratification in Combustion Chamber

HCCI operating window has two distinct boundaries of knock at higher load region and misfiring/partial burning at lower load region. Moreover, there is no conventional direct way of controlling combustion timing in an HCCI engine. In this research, experimental study were carried out to investigate the effect of thermal and charge stratification on expansion of the operating range of a natural ...

متن کامل

A New Strategy for Reduction of Emissions and Enhancement of Performance Characteristics of Dual Fuel Engines at Part Loads

Increasingly restrictive emission regulations and renewed focus on energy efficiency drive the current researches to find alternative fuels and their related better combustion strategies. In this regard, dual fuel engines, in which natural gas fuel is used as a main fuel and diesel fuel is employed as a pilot fuel, have received considerable attention. However, poor fuel utilization efficiencie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012